
F09/F10 Neuromorphic Computing

Grübl, Andreas
agruebl@kip.uni-heidelberg.de

Baumbach, Andreas
andreas.baumbach@kip.uni-heidelberg.de

May 4, 2021

Revision History

Revision Date Author(s) Description

0.5 10.10.16 AG created
0.6 13.04.17 AG correction
1.0 11.10.17 AB, AG Added XOR-experiment
1.1 13.11.17 AB, AG Improved readability

This script has mainly been compiled from the following references:
[6, 10, 15]



F09/F10 Neuromorphic Computing

Contents

1. Introduction 4

2. Biological Background 5
2.1. Conductance-based Leaky Integrate and Fire Model . . . . . . . . . . . . . . 6
2.2. Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. The Neuromorphic System 10
3.1. The Neuromorphic Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1. Short Term Plasticity (short term plasticity (STP)) . . . . . . . . . . . 12
3.2. Readout of Analog Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3. System Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4. Configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5. Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Experiments 16
4.1. Investigating a Single Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2. Calibrating Neuron Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3. A Single Neuron with Synaptic Input . . . . . . . . . . . . . . . . . . . . . . . 20
4.4. Short Term Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5. Feed-Forward Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6. Recurrent Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7. A Simple Computation - XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A. Acronyms 30

B. Relevant Technical Configuration Parameters 31

C. The PyNN Language 32

D. Linux Basics 38

2



F09/F10 Neuromorphic Computing

Prerequisites This experiment will introduce neuromorphic hardware that has been devel-
oped in Heidelberg, together with some helpful neuroscientific background. The neuromor-
phic hardware device, the Spikey chip, is used by means of scripts written in the Python
programming/scripting language, which is also used for data analysis and evaluation of the
results.
The following Python-based software packages will be used, all are already installed on the

computer that will be used for experiment execution:

• Python installation: Python 2.7.9

• Generic numerical extension: numpy 1.8.2

• Generic plotting: matplotlib 1.4.2

• Procedural experiment description PyNN 0.6

• Experiment data analysis: elephant 0.3.0, based on neo 0.4.0

The basic usage of these packages is easy to understand and is demonstrated by means of
example scripts. These scripts only need slight modifications/extensions in order to obtain
your results. However, a basic understanding of how to write a Python program/script
is very helpful for this experiment. A very good introductory tutorial can be found at:
http://www.physi.uni-heidelberg.de/Einrichtungen/AP/Python.php
Parts of the measurements will be done with an oscilloscope of type IDS-1104B. The manual

is available on the FP website1. Make yourself familiar with its usage; we will use frequency
measurement and basic statistics functions.
We try to provide the necessary neuroscientific background in this script. However, looking

at some of the referenced literature might be a good idea. Gerstner and Kistler [9] provides
a good overview over different neuron models, in this experiment you will use the leaky-
integrate-and-fire (Leaky integrate and fire neuron model (LIF)) model with conductance
based synapses. There is also the Spikey school2 which serves as a starting point for external
users. Feel free to also use the references given there.

1http://www.physi.uni-heidelberg.de/Einrichtungen/FP/versuche/anleitungen.php
2https://electronicvisions.github.io/hbp-sp9-guidebook/pm/spikey/spikey_school.html
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1. Introduction

In this experiment you will characterize and use the Spikey-hardware platform. It is part of
an emerging field of neuromorphic computing devices and was developed in Heidelberg at the
Kirchhoff Institute for physics.
The term neuromorphic engineering was introduced by Carver Mead, in the late 1980s,

and describes the development of analog circuits to mimic brain circuitry [13, 22]. These
systems are then used to emulate biological neural networks as an alternative to simulating
those on traditional von-Neumann architecture computers. A human brain uses about 20
watts of power. The energy budget of the whole human body is about 100 watts. This
significant cost factor creates an enormous amount of evolutionary pressure to develop an
effective information processing system. The motivation behind neuromorphic research and
especially behind the physical hardware development is to understand and then use this
biological efficiency.
Before we can discuss the Spikey-system that you will later use in section 3, we will give

a brief introduction to the biological background that you will need in order to perform the
experiment in section 2. section 4 describes your tasks and in Appendix B, Appendix C and
Appendix D you can find an overview over hardware parameters, the PyNN-language and
some basic Linux commands respectively. Especially these last sections can have outdated or
simply wrong information, take it as a starting point in your search for answers rather than
a source of ultimate truth. If you find any mistakes please report them to us.
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2. Biological Background

threshold voltage
action potential (“spike”)

neurons

synapses
output spike

neuron

membrane voltage

Figure 1: Left: Schematic drawing of a neuron after Ramón y Cajal; dendrites, soma and
axon can clearly be distinguished. Figure taken out of [9]. Center: Schematic
representation of the neuron circuit, with two presynaptic neurons (left two circles)
and one postsynaptic neuron (right circle) with synaptic connections (lines). Right:
Schematic membrane voltage time course of the output neuron given the input
neurons’ behavior. Top: Only one input spike (action potential), one postsynaptic
potential (PSP) visible. It forms a difference of exponential, due to the finite
membrane time constant. Middle: Both input neurons emit an AP at different
times. The output neuron integrates the input and shows the sum of both PSPs.
Bottom: Both input neurons emit several APs. The output neuron integrates the
input until reaching its threshold potential (θ). At this point a run away effect
would take over and the membrane potential would increase dramatically. The
output neuron emits an action potential itself. Figure adapted from [1].

The computational power of biological organisms arises from systems of massively inter-
connected cells, namely neurons. These basic processing elements build a very dense network
within the vertebrates’ brain (in Latin: cerebrum). Most of the cerebral neurons are con-
tained within the cerebral cortex that covers parts of the brain surface and occupies an area
of about 1.5m2 due to its nested and undulating topology. In the human cortex, the neuron
density is in the order of 70,000 neurons per cubic millimeter and each neuron receives in-
put from up to 10,000 other neurons, with the connections sometimes spread over very long
spatial distances [21].
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An overview of a neuron is shown in Figure 1. The typical size of a mammal’s neuronal
cell body, or soma, ranges from 10 to 50µm and it is connected to its surroundings by a
deliquesce set of wires. In terms of information, the dendrites are the inputs to the neuron,
which has one output, the axon. Axons fan out into axonic trees and distribute information
to several target neurons by coupling to their respective dendrites via synapses.
The voltage over the neuron’s membrane (i.e. the difference between the inner-neuron

potential and the inter cellar mediums potential) depends on the ion-concentration within
it. These are changed actively by ion-pumps and passively by diffusion processes. The
former are located at the synapses and can be triggered by activity from other neurons.
The activity of the ion pumps also depends on the potential difference on the membrane:
If the voltage approaches fast enough a high enough value a run-away effect takes over and
leads to a depolarization of the membrane. This dramatic increase in voltage is the so-called
action potential. Slower gated ion-channels then deterministically pull the neuron’s membrane
potential back below its equilibrium value (hyper-polarization). See also caption of Figure 1.
The action potential (AP) travels along the axon and activates the synaptic connections

along the axonic tree. These trigger ion channels/pumps which modulate the membrane
potential of the postsynaptic neurons with a postsynaptic potential (PSP).
The time course of these spikes is hardly dependent on the precise input structure and

as such it mainly encodes information in the precise spike time. In this case we remove
the depolarization dynamic and instead fix the membrane potential to its hyper-polarization
value. This dramatically simplifies our model, while retaining (ideally all) relevant dynamical
information.

2.1. Conductance-based Leaky Integrate and Fire Model

1Vth

Vreset

Vm

ExEl Ei

gleak gx(t) gi(t)

τ refrac∝1/Irefrac
Irefrac

-
+

Figure 2: Electronic circuit representation of a leaky integrate and fire neuron model.

For our purposes it is okay to think about the neuron as a capacitor3 that is connected to
multiple voltage sources as depicted in Figure 2. The different ion channels are subsumed to a
single excitatory and a single inhibitory potential and the diffusion through the membrane is
replaced by the leakage potential. For this simplified model we can write down the governing
equation by using Kirchhoff’s laws:

Cm
dVm

dt
= IC(t) = gleak(El − Vm) +

∑
j

gxj (t)(Ex − Vm) +
∑
k

gik(t)(Ei − Vm) (1)

3If you are interested in a more complete mathematical description of biologically plausible models you can
start with, e.g., [9]
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Where Cm is the capacitance of the capacitor, Vm the voltage over it, IC the current that
(de)charges it, gleak the conductance to the leak potential El, and gxj /g

i
k the conductances to

the excitatory/inhibitory so-called reversal potentials Ex/Ei. This model approximates the
behavior of biological neurons without the spiking non-linearity. In order to add this we can
simply compare the voltage to a threshold value Vth and say the neuron emits a spike along its
axon, triggering all its synaptic connections, when its membrane voltage Vm crosses Vth. In
order to also approximate the hyper-polarization at the end of the spike, the neuron enters a
refractory period in which its potential is clamped to a reset value Vreset. After the refractory
time τrefrac the clamping is released and it continues evolving according to Equation 1. The
refractory time τrefrac can be controlled by a technical parameter Irefrac in Figure 2 which is
usesful for our experiment but usually not included in the generic LIF model.

So far we have modeled a single neuron, where we can read back its "output" (i.e., spikes)
by the threshold comparison. Interactions between neurons are based on the action potentials
traveling down the axonic tree of the presynaptic neuron. The synapses along the axon act
as a preprocessor of the arriving information.

This amplitude is the synaptic strength. Within the conductance based LIF model, this is
implemented as an exponential shaped postsynaptic conductance. This conductance is either
to the excitatory or to the inhibitory reversal potential, depending on the presynaptic neuron.
This homogeneity is called Dale’s law.

With this in mind we can write down the ODE for the conductances gxj /g
i
k:

τsyn
dg

dt
= −g + w

∑
δ(t− ts) (2)

where τsyn is the synaptic time constant, g is the synaptic conductance, w the synaptic
strength and the sum runs over the spike trains of all presynaptic neurons.

Due to the finite membrane capacitance Cm from Equation 1 these exponentials are lowpass-
filtered. The resulting trace on the postsynaptic neuron is then a difference of exponentials
(also called alpha-shaped) postsynaptic potentials (PSPs). In Figure 3 you can see biological
measurements of neurons with relatively short membrane time constants τm = Cm

gl
.

Figure 3: postsynaptic potentials measured in biological tissue (from motoneurons); adapted
from [4].
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2.2. Plasticity

The synapses also act as a preprocessor of the information arriving at a neuron’s dendrite in
terms of modulating the effect on the postsynaptic neuron, which is located after the synapse.
Modulating in this sense means weighting the presynaptic input in terms of its strength.
The possibility of dynamically changing the synapse weights is called plasticity. This

change in the effect of a presynaptic signal on the postsynaptic neuron forms the basis of
most models of learning and development of neural networks. Spikey implements two forms of
plasticity: short term plasticity (Tsodyks Markram Model (TSO)) and spiketime-dependent
plasticity (spike timing dependent plasticity (STDP)) [19, 18]. The former modulates the
w in Equation 2 as a function of its local history and models resource availability of the
neuron. Whereas the latter changes w permanently and models permanent or at least long
term connectivity changes. You will only work with the STP circuitry and therefore we will
neglect STDP in the following.
Spikey implements a simplified version of Tsodyks-Markram model [19]. Neurotransmitters

of a synapse are modeled as being in one of three states (recovered R, effective E and inactive
I), whose relations are described by the following equations:

1 = R+ E + I (3)
dE

dt
= − E

τfacil
+

∑
spk

URδ(t− tspk) (4)

dR

dt
=

I

τrec
−
∑
spk

URδ(t− tspk) (5)

The synaptic conductance is proportional to the effective partition E. Essentially E(t) is a
multiplicative factor that goes into gj(t)/gk(t) in Equation 1.
Starting from a completely relaxed system, i.e. (R,E, I) = (1, 0, 0), an arriving spike

transfers a portion U ∈ (0, 1) (the utilization) of the recovered partition R into the effective
partition E. E then decays with time constant τfacil into I and I with time constant τrec
back to R. Different values of τfacil and τrec lead to different behavior (c.f., Figure 4).
We will discuss its implementation on Spikey in subsubsection 3.1.1.
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Figure 4: Synaptic conductance (left) and membrane voltage (right) of a neuron under a
regular 100 Hz stimulus for different TSO parameters. U = 0.2, hence the first
PSP is 5 times as high without TSO (top row). τrec = 100ms and τfacil = 200ms
when activated, otherwise 0ms. Figure adapted from [14].
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Figure 5: Microphotograph of the Spikey ASIC-chip (fabricated in a 180 nm CMOS process
with die size 5 × 5mm2). Each of its 384 neurons can be arbitrarily connected
to any other neuron. In the following, we give a short overview of the technical
implementation of neural networks on the Spikey chip. (A) Within the synapse
array 256 synapse line drivers convert incoming digital spikes (blue) into a linear
voltage ramp (red) with a falling slew rate tfall. Each of these synapse line drivers
are individually driven by either another on-chip neuron (int), e.g., the one depicted
in (C), or an external spike source (ext). (B) Within the synapse, depending on its
individually configurable weight wi, the linear voltage ramp (red) is then translated
into a current pulse (green) with exponential onset and decay. These postsynaptic
pulses are sent to the neuron via the excitatory (exc) and inhibitory (inh) input line,
shared by all synapses in that array column. (C) Upon reaching the neuron circuit,
the total current on both input lines is converted into conductances, respectively.
If the membrane potential Vm crosses the firing threshold Vth, a digital pulse (blue)
is generated, which can be recorded and fed back into the synapse array. After any
spike, Vm is set to Vreset for a refractory time period of τrefrac. Neuron and synapse
line driver parameters can be configured as summarized in Table 2.

3. The Neuromorphic System

The central component of our neuromorphic hardware system is the neuromorphic microchip
Spikey . It contains analog very-large-scale integration (very large scale integration (VLSI))
circuits modeling the electrical behavior of neurons and synapses (Figure 5). In such a physi-
cal model, measurable quantities in the neuromorphic circuitry have corresponding biological
equivalents. For example, the membrane potential Vm of a neuron is modeled by the voltage
over a capacitor Cm that, in turn, can be seen as a model of the capacitance of the cell
membrane. In contrast to numerical approaches, dynamics of physical quantities like Vm
evolve continuously in time. We designed our hardware systems to have time constants ap-
proximately 104 times faster than their biological counterparts allowing for high-throughput
computing. This is achieved by reducing the size and hence the time constant of electrical
components, which also allows for more neurons and synapses on a single chip. To avoid con-
fusion between hardware and biological domains of time, voltages and currents, all parameters
are specified in biological domains throughout this script.

10
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3.1. The Neuromorphic Chip

On Spikey (Figure 5), a VLSI version of the standard leaky integrate-and-fire (LIF) neuron
model with conductance-based synapses is implemented [7]. The neuromorphic circuits are
divided into two blocks containing neurons and the connected synapse array (see Figure 5).
Each block contains 192 neuron circuits with 256 synapses per neuron, located in the columns
above the neurons. A description of the information flow can be found in the caption of
Figure 5.
The time evolution of the membrane potential can be found by Kirchhoff’s equations ap-

plied to the circuit depicted in Figure 5C:

Cm
dVj
dt

= gleak (Eleak−Vj)+
∑
n

wmax
j,n (t) gx

n(t) (Ex−Vj)+
∑
k

wmax
j,k (t) gi

k(t) (Ei−Vj) (6)

For details on its hardware implementation see Figure 5, [16] and [12].
The constant Cm represents the total membrane capacitance. Thus the current flowing on

the membrane is modeled multiplying the derivative of the membrane voltage V with Cm.
The conductance gleak models the ion channels that pull the membrane voltage towards the
leakage reversal potential4 El. The membrane finally will reach this potential, if no other
input is present. Excitatory and inhibitory ion channels are modeled by synapses connected
to the excitatory and the inhibitory reversal potentials Ex and Ei respectively. By summing
over n, all excitatory synapses are covered by the first sum. The index k runs over all
inhibitory synapses in the second sum. So the two sums run over all connected synapses for
neuron j.
The synaptic connection strength is composed of two parts, a long-term part wmax and a

short term part g which are affected by different forms of plasticity (c.f., subsection 2.2). In
the conductance-based LIF model, the utilized synaptic conductance of a neuron j is increased
whenever a presynaptic partner neuron k spikes and otherwise decays exponentially back to
its resting value, which is zero:

τsyn
dgj,k
dt

= −gj,k(t) + UR(t)δ(t− ts) (7)

The size of the increase UR(t) gives the utilized fraction of the available synaptic resources
at time t. If TSO is deactived then UR(t) = 1 and there is no short term dependency.
The solution to this differential equation is a sum of exponentially decaying functions, with
time constant τsyn. Due to the finite membrane time constant (τm) this results in an alpha-
shaped PSP on the postsynaptic neuron. This fits the PSP shape observed in biology (c.f.,
subsection 2.1).
On Spikey the synaptic weight wmax is implemented as a 4-bit weight which can be modified

on longer time scales via spike-time dependent plasticity (STDP). Spikey has the capability
to apply both STP and STDP, if you are interested [9] is a good place to start, but in this
experiment you will only work with STP.
The propagation of spikes within the Spikey chip is illustrated in Figure 5 and described in

detail by [16]. Spikes enter the chip as time-stamped events using standard digital signaling

4The reversal potential of a particular ion is the membrane voltage at which there is no net flow of ions
from one side of the membrane to the other. The membrane voltage is pulled towards this potential if the
according ion channel becomes active.
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techniques that facilitate long-range communication, e.g., to the host computer or other chips.
Such digital packets are processed in discrete time in the digital part of the chip, where they
are transformed into digital pulses entering the synapse line driver (blue in Figure 5A). These
pulses propagate in continuous time between on-chip neurons, and are optionally transformed
back into digital spike packets for off-chip communication.

3.1.1. Short Term Plasticity (STP)

Spikey implements a simplified version of the Tsodyks-Markram mechanism (c.f. subsec-
tion 2.2). Unlike TSO, where both τfacil and τrec may be unequal to zero, Spikey’s implemen-
tation allows only to set one of the two. With the other being effectively zero. This means
we can only produce either facilitating or depressing synapses (2nd and 3rd row in Figure 4)
and not a superposition of both (4th row in Figure 4).
In the PyNN-implementation you will have to choose between either setting τfacil or τrec to

zero, otherwise the software will complain. The calibration of the STP time constant is rather
imprecise and as such one cannot expect accurate translation of software defined values to
the physical realization. Additionally U is implemented as a 2-bit value rather than a floating
point number.
For details about the hardware implementation and emulation results, see [17] and Part 5:

Short-term plasticity, respectively.

3.2. Readout of Analog Signals

Spike communication and the transmission of chip configuration data to and from the Spikey
chip is done via its digital interface. Additionaly, the chip provides 8 analog readout channels
that can be used to monitor or record the membrane voltage of selected neurons. All neurons
can be connected to these readout channels following a fixed scheme, as illustrated in Figure 6.
The connection is established by closing a switch between the respective neuron circuit and
the readout channel’s signal line.
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Figure 6: Assignment of physical neuron numbers to analog readout lines on the Spikey chip.
Neurons in the left block (i.e. 192 to 383) connect to readout lines 4 to 7; neurons
in the right block (i.e. 0 to 191) connect to lines 0 to 3.

Important : You have to ensure that only one neuron connects to each readout channel at
a time; i.e. out of neurons 0, 4, 8, ... only one at a time can be recorded via analog readout
channel 0. Simultaneously, one out of 1, 5, 9, ... can be connected to channel 1.
The membrane voltage of a neuron can be connected to an analog readout channel with

the PyNN-Command pynn.record_v (see section Appendix C). This command does a sanity
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Figure 7: Integrated development environment: User access to the Spikey chip is provided us-
ing the PyNN neural network modeling language. The control software controls and
interacts with the network module which is operating the Spikey chip. The RAM
size (512MB) limits the total number of spikes for stimulus and spike recordings to
approx. 2 · 108 spikes.

check and prints a warning message on the console in case the desired connection cannot be
implemented. If only one membrane voltage is to be recorded, it is automatically digitized by
an analog-to-digital converter (ADC) that is located on the system. Digitized values can be
retrieved using the PyNN-commands pynn.timeMembraneOutput and pynn.membraneOutput,
respectively. Their usage is already given in the Python scripts of the according tasks. If
more than one membrane voltage is to be recorded, the ADC is not used, but the voltage
outputs are rather only connected to the physical outputs of the chip which are connected to
a breakout cable with 8 signal lines. These signals can be connected to an oscilloscope where
up to 4 channels can be displayed/recorded, simultaneously.

3.3. System Environment

The Spikey chip is mounted on a network module described and shown in Figure 7. Digital
spike and configuration data is transferred via direct connections between a field-programmable
gate array (field programmable gate array (FPGA)) and the Spikey chip. On board digital-to-
analog converter (DAC) and analog-to-digital converter (ADC) components supply external
parameter voltages to the Spikey chip and digitize selected voltages generated by the chip for
calibration purposes, or for monitoring of selected membrane voltages. Because communica-
tion between a host computer and the FPGA has a limited bandwidth that does not satisfy
real-time operation requirements of the Spikey chip, experiment execution is controlled by
the FPGA while operating the Spikey chip in continuous time. To this end, all experiment
data is stored in the local random access memory (random access memory (RAM)) of the
network module. Once the experiment data is transferred to the local RAM, emulations run
with an acceleration factor of 104 compared to biological real-time. This acceleration factor
applies to all emulations run in this experiment, independent of the size of networks.
During experiment execution, up to 8 membrane voltages of selected neurons can be read

out in parallel and be digitized by for example an oscilloscope. The eight analog signals are

13
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connected to a pin header in the Spikey USB box which can be connected to the oscilloscope
by a flat ribbon cable. This cable is part of the experiment setup.
Execution of an experiment is split up into three steps (Figure 7).

• First, the control software within the memory of the host computer generates configu-
ration data (Table 2, e.g., synaptic weights, network connectivity, etc.), as well as input
stimuli to the network. All data is stored as a sequence of commands and is transferred
to the memory on the network module.

• In the second step, a playback sequencer in the FPGA logic interprets this data and
sends it to the Spikey chip, as well as triggers the emulation. Data produced by the
chip, e.g., neuronal activity in terms of spike times, is recorded in parallel.

• In the third and final step, this recorded data stored in the memory on the network
module is retrieved and transmitted to the host computer, where they are processed by
the control software.

Having a control software that abstracts hardware greatly simplifies modeling on the neu-
romorphic hardware system. However, modelers are already struggling with multiple incom-
patible interfaces to software simulators. That is why our neuromorphic hardware system
supports PyNN5, a widely used application programming interface (API) that strives for a
coherent user interface, allowing portability of neural network models between different soft-
ware simulation frameworks (e.g., NEST or NEURON) and hardware systems (e.g., the Spikey
system). For details see e.g. [8] for NEST, [11] for NEURON, [3, 2] for the Spikey chip, and [5]
for PyNN, respectively.

3.4. Configurability

In order to facilitate the emulation of network models inspired by biological neural structures,
it is essential to support the implementation of different (cortical) neuron types. From a
mathematical perspective, this can be achieved by varying the appropriate parameters of the
implemented neuron model Equation 6.
To this end, the Spikey chip provides 2969 different analog parameters (Table 2) stored on

current memory cells that are continuously refreshed from a digital on-chip memory. Most of
these cells deliver individual parameters for each neuron (or synapse line driver), e.g., leakage
conductances gl. Due to the size of the current-voltage conversion circuitry it was not possible
to provide individual voltage parameters, such as, e.g., El, Eexc and Einh, for each neuron.
As a consequence, groups of 96 neurons share most of these voltage parameters. Parameters
that can not be controlled individually are delivered by global current memory cells.
In addition to the possibility of controlling analog parameters, the Spikey chip also offers an

almost arbitrary configurability of the network topology. As illustrated in Figure 5, the fully
configurable synapse array allows connections from synapse line drivers (located alongside
the array) to arbitrary neurons (located below the array) via synapses whose weights can be
set individually with a 4-bit resolution. This limits the maximum fan-in to 256 synapses per
neuron, which can be composed of up to 2 × 192 synapses from on-chip neurons6, and up

5http://neuralensemble.org/trac/PyNN/wiki/API-0.6
6The chip contains two identical synapse arrays, each driving 192 neurons. Neurons from both halves can
drive a synapse driver.
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to 256 synapses from external spike sources. Because the total number of neurons exceeds
the number of inputs per neuron, an all-to-all connectivity is not possible. For all networks
introduced in this experiment, the connection density is much lower than realizable on the
chip, which supports the chosen trade-off between inputs per neuron and total neuron count.
In practice most of these parameters are hidden from the user and automatically set ac-

cording to the user specified PyNN-setup. In this experiment only either the left half (up to
neuron number 192) or the right half (starting with neuron number 193) of Spikey will be
used.

3.5. Calibration

Device mismatch that arises from hardware production variability causes fixed-pattern noise,
which causes parameters to vary from neuron to neuron as well as from synapse to synapse.
Electronic noise (including thermal noise) also affects dynamic variables, as, e.g., the mem-
brane potential Vm. Consequently, experiments will exhibit some amount of both neuron-to-
neuron and trial-to-trial variability given the same input stimulus.
There will always be some level of temporal noise and there isn’t much that can be done

to remove this completely. However the fixed-pattern neuron-to-neuron noise that originates
in the different physical fabrication of the neurons we can compensate for.
Without further treatment we would simply map (by some measure) the user-intended

configuration (here done as a PyNN-network) to some hardware configuration using idealized
conversion rules. Essentially we would assume that all components are fabricated exactly
according to the specification. For example when the user specifies a membrane time constant
τm = Cm

gl
= 10ms it will translated into some value that should implement the required gl as

the capacity Cm is not adaptable. However the parameterized component that controls gl is
not perfectly in accordance to the specification and therefore the realized value of greall will
be off. This mismatch depends on the chosen neuron, but is stable in time. Therefore we can
correct for it by measuring greall as a function of the control parameter and build a look-up
table to find for a required gl the necessary parameter value.
This process is called the calibration and reduces the variation seen by the user by more

than an order of magnitude. In practice we have a rather good idea of the relation between
the parameter and the realized value, only the parameters of this transformation that are
unknown. In this case we can, instead of building a look-up table, fit the parameters of the
parameter translation.
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4. Experiments

4.1. Investigating a Single Neuron

During this task you will learn how to use the Spikey neuromophic chip, and how to record
relevant analog quantities with an oscilloscope, as well as in software via an analog-to-digital
converter (ADC) that is available in the system.
Before you start, make yourself familiar with the hardware setup and establish the necessary

connections (ask your supervisor in case anything should be unclear!):

• Power up the Intel NUC computer, your supervisor will set up your credentials. All
tasks will be run from this computer.

• Make sure that the Aluminum box with the Spikey chip is connected to the USB hub,
and the USB hub to the Intel NUC computer. Turn on the power on the USB-Hub.

• Check the connection of the breakout cable from the pin header in the Aluminum box
to the Inputs 1..4 of the Oscilloscope. Connectivity should look like Figure 8:

Figure 8: Connect the Aluminum box containing the Spikey system with the oscilloscope
using the provided breakout cable

At first, we will investigate the firing behavior of a single neuron without input. The neuron
can be brought into a continuous firing regime by setting the leakage reversal potential above
the firing threshold (cf., Equation 6).
Tasks:

1. Draw an equivalent circuit of a neuron in the described configuration. Take the neuron
schematic in Figure 5 as a reference.

Question: Which parameters of the neuron will influence to the firing frequency?

2. Go into the folder:

~/fp-spikey

Setup your current shell to use Spikey by sourcing the file
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../env.sh

In Appendix D you can find the commands to use, ask your supervisor if you have any
questions.

3. Execute the script:

experiments/fp_task1_1membrane.py

You will see some status output on the terminal.

The script configures one neuron with the described parameters and connects its output
to the analog readout lines. The analog signal will be digitized by the on board ADC
using the commands

pynn.record_v(neuron[0], ’’)
membrane =pynn.membraneOutput

The script also contains example code to plot the membrane voltage trace into the file

fp_task1_1membrane.png

Look at the generated plot and verify that the values for threshold voltage Vth and reset
voltage Er are set correctly.

4. In parallel, the membrane can be observed on the oscilloscope. Make yourself familiar
with the usage of the oscilloscope and display the membrane voltage output of the
configured neuron on channel 1. Determine the average firing rate of the neuron and
its standard deviation using the measure and statistics function of the oscilloscope.

Calculate the mean firing rate of the spikes received in the spikes array and compare
with the oscilloscope measurement.

Hint: To obtain a distribution of the interspike intervals (ISIs), you can calculate the
pair-wise difference of the received spike times and store them in a new array. The
mean value of these differences and its standard deviation can be calculated with the
according NumPy functions.
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4.2. Calibrating Neuron Parameters

You will already have recognized that the firing rates differ from neuron to neuron. In this
experiment you will look at the variations between different neurons. Due to imperfections
in the production process the physical circuits (neurons and synapses) show fixed pattern
noise. Calibration can reduce this noise as it is approximately constant over time (c.f.,
subsection 3.5).
During this task you will investigate the variability of the hardware neurons’ membrane

time constant τm = Cm
gl
. It differs from neuron to neuron mostly due to variations in the

leakage conductance gl. The following script sets up 4 identically (in software) configured
neurons with parameters that would be valid for an experiment.

experiments/fp_task2_calib4membranes.py

Tasks:

1. The script already contains valid neuron parameters; according to these parameters,
calculate the expected firing rate (cf. Equation 6).

Note: You can find the PyNN-default parameters of the neuron model by using

import pyNN.hardware.spikey as pynn
pynn.IF_facets_hardware1.default_parameters

Use this as a reference to see how much you probably deviate from the default. Use
Appendix C as a reference for PyNN-commands.

2. Calculate a new firing threshold voltage Vth to bring these neurons into a continuous
firing regime for measuring the membrane time constant τm, using this equation:

Vth = El − 1/e · (El − Vreset) (8)

Given this Vth, a firing rate of 1/(τm + τrefrac) is expected. Explain why.

3. Change the setting for Vth in the script accordingly and run the script. Adjust the
oscilloscope recording in a way that all 4 membrane voltages can be seen. It should
look like Figure 9:

Use the measurement functions of the oscilloscope to simultaneously measure the firing
frequency of the four connected neurons. Enable the statistics function to have the
oscilloscope calculate mean values and standard deviation. Note down these values.

4. Calibrate these neurons for identical firing rate, thus identical membrane time constant,
by adjusting the leak conductance gl for each neuron (note down the used values for
gl). Explain possible reasons for the distribution of values, explain how you adapt the
gls.

5. Investigate the fixed-pattern noise across neurons: Record the firing rates of 192 neu-
rons for the default value of the leak conductance (Note: record all neurons at once).
Interpret the distribution of these firing rates by plotting a histogram and calculating
the standard deviation. Compare with the plots in Figure 10.
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Figure 9: Oscilloscope screen of uncalibrated "identical" neurons.
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Figure 10: Calibration results for membrane time constants: Before calibration (left), the
distribution of τm values has a median of τ̃m = 15.1ms with 20th and 80th per-
centiles of τ20m = 10.3ms and τ80m = 22.1ms, respectively. After calibration (right),
the distribution median lies closer to the target value and narrows significantly:
τ̃m = 11.2ms with τ20m = 10.6ms and τ80m = 12.0ms. Two neurons were discarded,
because the automated calibration algorithm did not converge.

6. Optional: Perform a calibration. Automate the tuning that you performed by hand
in subtask 4 and attempt to find gl values such that all 192 neurons have the same
membrane time constant. Plot the histogram over the final gl values and the resulting
spike frequencies.
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4.3. A Single Neuron with Synaptic Input

In this task, you will evaluate the influence of synaptic input to the neuron. A rather old,
nevertheless valid, in vitro measurement of synaptic activity is shown in figure Figure 3. The
displayed PSP shows a steep rise from a resting state and an exponential decay back to rest.
In order to reproduce these measurements, you stimulate one hardware neuron with a single

synapse and record its membrane potential. The output signal is rather noisy, which is mostly
due to the read-out process. In order to average out this part of the signal, the neuron is stim-
ulated with a regular spike train and the spike-triggered average height of these PSPs is cal-
culated. A schematic for the on-chip configuration is shown in figure 11. These measurements
will mainly be done using the on-board ADC (see experiments/fp_task3_synin_epsp.py),
since triggering the EPSPs on the external oscilloscope is tricky. You may try to record the
membrane; several EPSPs can be observed, depending on the time scale setting.

a) b)

Figure 11: a) A neuron is stimulated using a single synapse and its membrane potential is
recorded. The parameters of synapses are adjusted row-wise in the line drivers
(red). b) Single and averaged excitatory postsynaptic potentials.

There are two parameters drvifall and drviout of the synapse line drivers (red box in
Figure 11a). Both are technical parameters that influence the PSP shape, that do not have
a direct representation in either Equation 6 or Equation 7. Their values can be set from
0 to 2.5. The parameter drvifall controls the duration of the falling voltage ramp of the
synapse line drivers (smaller values yield a longer ramp! This is not a linear relation!). The
parameter drviout scales the maximum conductance of the synapse (effectively the realized
scale of the four bit value of wj,k in equation Equation 7).
Note: Synaptic weights on hardware can be configured with integer values in the range

[0..15] (4-bit resolution). To stay within the range of synaptic weights supported by the
hardware, it is useful to specify weights in the domain of these integer values and trans-
late them into biological parameter domain by multiplying them with pynn.minExcWeight()
or pynn.minInhWeight() for excitatory and inhibitory connections, respectively. Synaptic
weights that are not multiples of pynn.minExcWeight() and pynn.minInhWeight() for ex-
citatory and inhibitory synapses, respectively, are stochastically rounded to integer values.

Tasks:
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1. Vary the parameters drvifall and drviout of the synapse line drivers and investigate
their effect on the shape of EPSPs (tip: use pynn.Projection.setDrvifallFactors
and pynn.Projection.setDrvioutFactors to scale these parameters, respectively).
Make sure that the spike threshold of the neuron is sufficiently large (> −30mV) in
order to avoid firing. Write down your observations.

2. Compare the PSPs between excitatory to inhibitory synapses.

3. Investigate the fixed-pattern noise across synapses: For a single neuron, vary the row
of the stimulating synapse and calculate the variance of the height of the EPSPs across
synapses. You need to add an according number of dummy drivers before the actually
used synapse driver.

Plot a histogram over the resulting PSP heights. Make sure that the firing threshold is
sufficiently high in order to prevent spiking!

4. In an additional script to this task (fp_task3_synin_epsp_stacked.py) you can find
commented lines for a different stimulus generation. Use this stimulus to observe stacked
EPSPs on the membrane, and reduce the temporal distance between the input spikes
until the neuron fires at least once. For this the threshold must not be set to a large
value.

Qualitatively compare the relative heights of the different PSPs with the previous fixed-
pattern noise results. Be aware that the input spikes come from different synapse
drivers. In light of your results regarding the fixed pattern noise: What do you expect?

5. Optional: Estimate the ratio between fixed-pattern and temporal noise: Measure the
distribution over PSP heights in a single run. Write down the mean and the standard
deviation for each single synapse. Compare this to the mean and standard deviation of
the mean heights of different synapses.
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4.4. Short Term Plasticity

In this task, the hardware implementation of Short-term plasticity (STP) is investigated.
The circuitry that has been implemented in the Spikey chip reproduces the synapse behavior
that is shown in Figure 12. The network description is identical to that shown in Figure 11,
but with STP enabled in the synapse line driver.

Figure 12: Depressing STP measured in biological tissue (adapted from [20])
.

You can find the required PyNN-functions in the script fp_task4_stp.py. You may need
to tune the synapse parameters a little bit to make the digitized membrane trace similar to
Figure 12.
It should be noted that the hardware resolution of utilization U from subsubsection 3.1.1

is limited to 2 bit on Spikey . As such there are only 4 different settings of U that can be
implemented on chip. Either τrec or τfac has to be zero, which selects the STP mode that is
currently active (cf. subsubsection 3.1.1). Do not expect these settings to correspond to the
exact time constant that will actually be realized.
In general you have to expect a significant amount of trial-to-trial variation in this part of

the experiment.
Tasks:

1. Start with the depressing mode (τfac = 0.). Vary the distance between the initial spikes,
and also the distance to the final spike. What do you observe? What happens if you
change U? Can you identify the four settings for U? What happens if you change τrec?

2. Compare the membrane potential to a network with STP disabled.

3. Configure STP to be facilitating and again answer the questions from part 1.
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4.5. Feed-Forward Networks

In this task, we learn how to setup networks on the Spikey system. In the last experiments
neurons received their input exclusively from external spike sources. Now, we introduce
connections between hardware neurons. As an example, a synfire chain with feed-forward
inhibition is implemented (for details, see [15]).
The aim is to sustain activity without having to either set the leak potential over the

threshold or feeding in external input. For this we will setup a chain of populations of neu-
rons, where each link triggers its down-stream neighbor. After stimulating the first neuron
population, network activity propagates along the chain, whereby neurons of the same popu-
lation fire synchronously. In order to prevent multiple consecutive spikes of a population, each
excitatory population has an inhibitory partner population that prevents successive spikes
(cf., Figure 13).

a) b)

Figure 13: a) Schematic of a synfire chain with feed-forward inhibition. Excitatory and
inhibitory neurons are colored red and blue, respectively. b) Emulated network
activity of the synfire chain including the membrane potential of the neuron with
ID=0 (see example script). The same color code as in the schematic is used. After
stimulating the first population, activity propagates through the chain and dies
out after the last population.

In PyNN connections between hardware neurons can be treated like connections from exter-
nal spike sources to hardware neurons. Note again that synaptic weights on hardware can be
configured with integer values in the range [0..15] (4-bit resolution). To stay within the range
of synaptic weights supported by the hardware, it is useful to specify weights in the domain of
these integer values and translate them into biological parameter domain by multiplying them
with pynn.minExcWeight() or pynn.minInhWeight() for excitatory and inhibitory connec-
tions, respectively. Synaptic weights that are not multiples of pynn.minExcWeight() and
pynn.minInhWeight() for excitatory and inhibitory synapses, respectively, are stochastically
rounded to integer values.
Tasks
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1. Tune the weights in the example script to obtain a synfire chain behavior as seen in the
Figure 13. Which connection is the most sensitive one? What happens if you disable
inhibition?

2. Reduce the number of neurons in each population and use the free neurons to increase
the chain size. Which hardware feature limits the minimal number of neurons in each
population? What is the maximal chain length that you can produce?

3. Close the loop from the last to the first population (in the python script). Your plots
should now look similar to Figure 14). Document your results.

Record 4 hardware neurons on the oscilloscope from ascending populations to see the
temporal difference of the arriving PSPs on the membranes and observe the timing of
the arriving excitatory stimulus and the feed-forward inhibition. Convince yourself that
the activity is sustained even after the software run completed.

Tip: For this part it might be easier to switch to a smaller chain with larger populations.
Note also that each neuron has a fixed readout-line it can be connected to. Make sure
that you record only one neuron per line (see subsection 3.2).

Figure 14: Emulated network activity of the synfire chain in a loop-configuration where the
last population stimulates the first population, forming a closed loop.
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4.6. Recurrent Networks

In this experiment, a recurrent network of neurons with sparse and random connections is
investigated. The purpose of this network will be to add some randomness to an otherwise
regularly spiking population of neurons. This network could then be used as a noise source
for other networks that are typically modeled in neuroscience. For this "noise" to be useful
it needs certain properties.
Typically the utilized noise is produced by a Poisson process. It is beyond the scope of this

experiment to discuss the exact properties of such sources, but as a (very crude) measure the
coefficient of variation (CV) will be used. For a Poisson process the CV is:

CV =
σ

µ
= 1 (9)

where σ is the standard deviation and µ the mean of the produced distribution (in our case
of inter spike times (ISI)).
At first, you will set up a population of neurons that uses half of the complete chip without

any interconnect, similar to experiment 4.1:

• Set up a population of 192 neurons with standard parameters but the resting potential,
e.g.: neuronParams = {’v_rest’: -30.0} in order to have them in a regular firing
regime.

• Record the spike times of all 192 neurons and output the membrane voltage of 4 selected
neurons to the oscilloscope, for your "visual" reference. Verify that all neurons that are
displayed on the oscilloscope are firing regularly.

• Now activate the inhibitory connections by setting: active_connections=True

To avoid self-reinforcing network activity that may arise from excitatory connections, we
choose connections between neurons to be inhibitory with weight w. Each neuron is con-
figured to have a fixed number K of presynaptic partners that are randomly drawn from
all neurons. These recurrent connections will inhibit the neurons and thereby introduce the
irregular spiking behavior. Due to the El-over-threshold setting this recurrent network runs
hypothetically forever, which allows for easy observations on the oscilloscope.
Question: What would happen if we would want to use excitatory connections?

Tasks:

1. With the setup above: For each neuron, measure the firing rate and plot it against the
CVs of inter-spike intervals. Interpret the correlation between firing rates and CVs.

2. Measure the dependence of the firing rates and CVs on w and K by sweeping both
parameters in your script. Use an appropriate number of w and K values. Visualize
the result. You can use the script fp_task6_plot.py.

3. Calibrate the network towards a firing rate of approximately 25Hz. Write down the
used parameters and save the results. Optional: Try to maximize the average CV, while
keeping the firing rate constant.
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a) b)

Figure 15: a) Schematic of the recurrent network. Neurons within a population of inhibitory
neurons are randomly and sparsely connected to each other. b) Network activity
of a recurrent network with K = 15 (source code lesson 4).
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4.7. A Simple Computation - XOR

In the previous tasks you have explored the properties of the Spikey neuromorphic chip
and have investigated some basic network configurations. Since this experiment is about
neuromorphic computing we will now look at a network that is not biologically inspired but
rather has a technical background. Bit-wise operations (AND, OR, NOT, NAND, XOR and
combinations of those) form the basis of traditional binary computations. You will implement
a spiking XOR because it is also a standard example of a classification task that is not linearly
separable.
A spiking XOR network has the following task: There are two input neurons and one

output neuron. If exactly one of the input neurons receives an input the output neuron
should fire. Otherwise it should stay silent.
Figure 16 shows one implementation, with excitatory neurons in red and inhibitory neurons

in blue. The two inputs (in1 and in2) project onto the first layer neurons y1 and y2. They
each trigger an inhibitory and an excitatory parrot neuron. Where the inhibitory parrots are
there to restrict each population to one spike per input spike. The excitatory parrots trigger
their respective second layer (h1 and h2), while the inhibitory parrots inhibit the opposite
second layer (h2 and h1 respectively). The second layer neurons also have excitatory and
inhibitory parrots, where the excitatory ones also trigger the output neuron.

y1

y2

h1

h2

o

Figure 16: Spiking XOR network

If only one input emits a spike, its side of the network propagates the spike to the output
neuron and the inhibitory neurons are only there to limit the number of spikes to one per
neuron. If no spike is inserted the network will show no activity at all. And finally if both
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inputs emit a spike the inhibitory connections y1 → h2 and y2 → h1 prevent the spike
propagation to the output neuron.

Figure 17: Network activity of a network with XOR functionality.

Tasks:

1. Assume that everything works perfectly (i.e. all neurons work and each input spike
triggers exactly one output spike). Can you come up with a smaller network that can
perform this task, given that each neuron can only have either excitatory or inhibitory
synapses? Draw a network circuit diagram.

2. In the network from Figure 16: Which are the most sensitive connections? How could
we make the network more robust? Compare this to subsection 4.5.

3. Find a set of weights I2Yw, Y2Hw, Y2Hi and H2Ow in the script.
Hint: Find a working point for I2Yw first, then Y2Hw and finally Y2Hi and H2Ow.
Can you reproduce the behavior shown in Figure 17?

Comment: If a population consistently fails to produce the correct behavior you can
move it to other physical neurons by adding it to skip_if_unreliable_list.

4. What do you expect to happen if there is some jitter on the input? Check the classifi-
cation rate (correct outputs as a fraction of presented inputs) for different amounts of
jitter.
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AppendixAppendix
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A. Acronyms

AP action potential

ADC analog-to-digital converter

ASIC application specific integrated circuit

CMOS complementary metal oxide semiconductor

DAC digital-to-analog converter

FPGA field programmable gate array

ISI interspike interval

LIF Leaky integrate and fire neuron model

PSP postsynaptic potential

RAM random access memory

STDP spike timing dependent plasticity

STP short term plasticity

TSO Tsodyks Markram Model

VLSI very large scale integration

30



F09/F10 Neuromorphic Computing

B. Relevant Technical Configuration Parameters

Scope Name Type Description

Neuron
circuits (A)

n/a in Two digital configuration bits activating the neuron and readout of its membrane
voltage

gl in Bias current for neuron leakage circuit
τrefrac in Bias current controlling neuron refractory time
El sn Leakage reversal potential
Einh sn Inhibitory reversal potential
Eexc sn Excitatory reversal potential
Vth sn Firing threshold voltage
Vreset sn Reset potential

Synapse line
drivers (B)

n/a il Two digital configuration bits selecting input of line driver
n/a il Two digital configuration bits setting line excitatory or inhibitory

trise, tfall il Two bias currents for rising and falling slew rate of presynaptic voltage ramp
gmax
i il Bias current controlling maximum voltage of presynaptic voltage ramp

Synapses (B) w is 4-bit weight of each individual synapse

STP
related (C)

n/a il Two digital configuration bits selecting short-term depression or facilitation
USE il Two digital configuration bits tuning synaptic efficacy for STP
n/a sl Bias voltage controlling spike driver pulse length

τrec, τfacil sl Voltage controlling STP time constant
I sl Short-term facilitation reference voltage
R sl Short-term capacitor high potential

Table 2: List of analog current and voltage parameters as well as digital configuration bits.
Each with corresponding model parameter names, excluding technical parameters
that are only relevant for correctly biasing analog support circuitry or controlling
digital chip functionality. Electronic parameters that have no direct translation
to model parameters are denoted n/a. The membrane capacitance is fixed and
identical for all neuron circuits (Cm = 0.2 nF in biological value domain). Param-
eter types: (i) controllable for each corresponding circuit: 192 for neuron circuits
(denoted with subscript n), 256 for synapse line drivers (denoted with subscript l),
49152 for synapses (denoted with subscript s), (s) two values, shared for all even/odd
neuron circuits or synapse line drivers, respectively, (g) global, one value for all cor-
responding circuits on the chip. All numbers refer to circuits associated to one
synapse array and are doubled for the whole chip. For parameters denoted by (A)
see Equation 6 and [16], for (B) see Figure 5 and [7], for (C) see [17].
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C. The PyNN Language

C.1. Basic Commands

Basic commands, required for every simulation

C.1.1. pynn.setup

Has to be called in the beginning of any experiment.

pynn.setup(mappingOffset =2)

The parameter mappingOffset gives the physical neuron ID where the mapping starts.

C.1.2. pynn.Population

Constructs a population (group) of neurons.

pynn.Population(dims=5, cellclass =pynn.IF_facets_hardware1,
cellparams =params, label =’’)

The parameter dims specifies the number of neurons in the population. The neurons will
be placed sequentially starting with neuron ID mappingOffset (see pynn.setup). Additional
population will be placed directly behind the last constructed population.
cellclass specifies the neuron model, in this case always Spikey neurons (pynn.IF_facets_hardware1 ).
cellparams contains the configurable parameters of the neuron model, for the format see
pynn.IF_facets_hardware1.default_parameters.

C.1.3. pynn.Projection

Construct connections between population of neurons.

pynn.Projection(presynaptic_population =pop1,
postsynaptic_population =pop2,
method =connector, target =’excitatory’)

The postsynaptic_population receives the spikes of the presynaptic_population.
method specifies how the single neurons are connected between the populations (see Connec-
tors).
target specifies the type of the interaction (excitatory or inhibitory)

C.1.4. pynn.run

Starts the simulation for the specified network (given by populations and projections).

pynn.run(simtime=1000.)

Executes the simulation for simtime milliseconds.
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C.1.5. pynn.end

Concludes the simulation. Necessary before pynn.setup can be called again. Required for
multiple Simulations in a single script.

C.2. Neurons

C.2.1. pynn.IF_facets_hardware1

Neuron type of the Spikey chip.

pynn.IF_facets_hardware1

parameters are the neuron parameters that are to be implemented in the hardware neuron.
The parameters are represented by a dictionary, if none is specified the following default
values are used:

C.2.2. pynn.IF_facets_hardware1.default_parameters

pynn.IF_facets_hardware1.default_parameters ={
"e_rev_I": -80.0,
"g_leak": 20.0,
"tau_refrac": 1.0,
"v_reset": -80.0,
"v_rest": -75.0,
"v_thresh": -55.0

}

e_rev_I sets the inhibitory reversal potential in millivolt.
g_leak sets the leak conductance V_rest.
tau_refrac sets the refractory time in milliseconds.
v_reset sets the reset potential in millivolt.
v_rest sets the rest potential in millivolt.
v_thresh sets the firing threshold in millivolt.
Note: Check the exact spelling. If you have a typo, the default value will silently be used!

C.3. Connectors

Connectors implement connection types between populations.

C.3.1. pynn.AllToAllConnector

Connects all neurons of the presynaptic population with all neurons of the postsynaptic
population of a projection (see pynn.Projection).

pynn.AllToAllConnector(allow_self_connections =True, weights =1.0)

If allow_self_connections is True (instead of False) neurons will be self-connected. This is
only relevant if the pre- and postsynaptic population are identical (i.e. a population is being
recurrently connected).
weights sets the strength of the connection in nS (nanosiemens) (see Hardware Weights).
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C.3.2. pynn.FixedNumberPostConnector

Connects each neuron of the presynaptic population with a fixed number of neurons in the
postsynaptic population.

pynn.FixedNumberPostConnector(n =10, allow_self_connections =True,
weights =1.0)

n is the number of connections per neuron of the presynaptic population.
The other parameters are used as with pynn.AllToAllConnector.

C.3.3. pynn.FixedNumberPreConnector

Connects each neuron of the postsynaptic population with a fixed number of neurons in the
presynaptic population.

pynn.FixedNumberPostConnector(n =10, allow_self_connections =True,
weights =1.0)

n is the number of connections per neuron of the postsynaptic population.
The other parameters are used as with pynn.AllToAllConnector.

C.3.4. pynn.FromListConnector

pynn.FromListConnector(conn_list =[(pre, post, weight, delay), (...), ...])

The list conn_list contains the information for the connection between the neuron number
pre of the presynaptic population and the neuron number post of the postsynaptic population
with weight weight and delay delay.
pre and post are the indices of the neurons in the respective populations (see pynn.Projection).
weight is the respective strength (see Hardware Weights)
delay is the synaptic delay in milliseconds that spikes are supposed to have. This is not
implemented on the Spikey hardware, therefore this always has to be None

C.3.5. pynn.OneToOneConnector

pynn.OneToOneConnector(weights =1.0, delays =None)

This connector connects the 0-th neuron of the presynaptic population to the 0-th neuron
of the postsynaptic population, the 1st to the 1st and so on until all neurons of the smaller
population are connected. All other neurons remain unconnected.
The other parameters are identical to the other connectors.

C.4. Sources

Sources are external spike sources, that can be used to stimulate neurons. Either an ar-
ray with fixed spike-times needs to be provided (pynn.SpikeSourceArray) or a source which
automatically generates spike times has to be used (pynn.SpikeSourcePoisson).
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C.4.1. pynn.SpikeSourceArray

pynn.SpikeSourceArray
paras ={’spike_times’: [1, 10, 20]}

Generates external spikes at times 1ms, 10ms and 20ms. The spike times can be provided by
an numpy-array or a python-list.

C.4.2. pynn.SpikeSourcePoisson

pynn.SpikeSourcePoisson(parameters ={’duration’: 1000., ’rate’: 1.0,
’start’: 0.0})

Generates, after start ms (here 0ms, i.e. simulation begin) spikes, whose inter spike intervals
are Poisson distributed with rate rate (here 1.0Hz). duration sets the time when the source
stops providing spikes (here 1000ms).

C.5. Readout

Methods that are to be called to retrieve measured membrane voltages or spike-times of
population. Note: There is only one ADC, so at most one membrane voltage can be recorded
and the bandwidth for spike time transfer is limited, groups of 64 neurons transmit spikes
over a shared bandwidth.

C.5.1. pynn.record

Called to record the spike times of a population. Has to be called before pynn.run().

pop = pynn.Population(dims=5, cellclass =pynn.IF_facets_hardware1,
cellparams =params, label =’’)

pop.record()

record is a method of the population class and can be called after construction of a population.

C.5.2. pynn.getSpikes

Called to retrieve the spikes of a population.

pop = pynn.Population(dims=5, cellclass =pynn.IF_facets_hardware1,
cellparams =params, label =’’)

pop.record()
pynn.run(1000.)
spikes =pop.getSpikes()

spikes is now a list consisting of tuples (neuron id, spike time), where neuron id is the number
of the neuron from the population. If the population consists of only one neuron the neuron
id will be identical for all tuple. In this case you can read out the spike times as:

spikes =pop.getSpikes()[:,1]
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If the population consists of more than a neuron and one wants to read the spike times of
e.g. the third neuron, one can use the following:

spikes =pop.getSpikes()
spikes =spikes[spikes[:,0]==2, 1]

C.5.3. pynn.record_v

pynn.record_v(pop[i], ’’)

Records the membrane voltage of the i-th neuron of the Population pop (e.g. i = 0 is the
first neuron). Warning: On Spikey there is only one ADC, as such only one membrane trace
can be digitized per run.

C.5.4. pynn.timeMembraneOutput

times =pynn.timeMembraneOutput

times contains the times, when the membrane was digitized.

C.5.5. pynn.membraneOutput

membrane =pynn.membraneOutput

membrane contains the digitized values of the membrane, for the corresponding times see
pynn.timeMembraneOutput.

C.6. Hardware Weights

Spikey implements 4-bit synaptic weights. Set weights are stochastically rounded. The
following parameter are used to give the weights in terms of the minimum or maximum pos-
sible hardware-weight. The configurable weights differ for excitatory and inhibitory synaptic
weights.

connector =pynn.AllToAllConnector(allow_self_connections =True,
weights =2 * pynn.minExcWeight())

pynn.Projection(presynaptic_population =pop1,
postsynaptic_population =pop2,
method =connector, target =’excitatory’)

C.6.1. pynn.maxExcWeight()

The maximum configurable excitatory weight on Spikey.

C.6.2. pynn.maxInhWeight()

The maximum configurable inhibitory weight on Spikey.
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C.6.3. pynn.minExcWeight()

The minimum configurable excitatory weight on Spikey.

C.6.4. pynn.minInhWeight()

The minimum configurable inhibitory weight on Spikey.
In the following example the neurons of population pop1 and pop2 are excitatorily con-

nected. Their weight is twice the minimal possible hardware weight (2 * pynn.minExcWeight).

C.7. Minimal Example

import pyNN.hardware.spikey as pynn
import matplotlib.pyplot as plt

# Setup experiment
pynn.setup(mappingoffset=0)

# Construct Poisson source
# Setup parameters for the source
poisson_parameters ={’duration’: 10000., ’rate’: 500.0,’start’: 0.0}
# Construct the source itself
pop1 =pynn.Population(dims=1, cellclass =pynn.SpikeSourcePoisson,

cellparams=poisson_parameters)

# Construct a single neuron with default parameters
pop2 =pynn.Population(dims=1, cellclass =pynn.IF_facets_hardware1)
# Record the membrane trace of this neuron
pynn.record_v(pop2[0])

# Finally connect the spike source to the neuron
# First specify the type of the connection
connector =pynn.AllToAllConnector(allow_self_connections =True,

weights =10 * pynn.minExcWeight())
# Connect the source to the neuron
pynn.Projection(presynaptic_population =pop1,

postsynaptic_population =pop2,
method =connector, target =’excitatory’)

# After specifying the simulation (populations and projections) execute the run
pynn.run(10000)

# After the simulation read back the membrane
times =pynn.timeMembraneOutput
membrane =pynn.membraneOutput

# Finalize the experiment
pynn.end()

# Here we could start again with
pynn.setup()
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D. Linux Basics

D.1. Needed commands

Basically you only need to change to the spikey FP folder, execute the python command in
the correct shell-environment and access to a text editor.

D.1.1. cd path

Change Directory. Changes the current working directory of your shell to the path you
specified

cd ~/fp-spikey

Here you change into the folder fp-spikey in your HOME-directory. In this directory you
find a folder experiments and the file env.sh.

D.1.2. source file

Executes each line in file in the current shell

source env.sh

Adapts the environment of the current shell such that spikey can be used.

D.1.3. python file

Executes the python script

python experiments/fp_taks1_1membrane.py

D.1.4. geany file

Opens file in the text editor geany.

geany experiments/fp_taks1_1membrane.py

You can of course use any text editor you want.

D.2. Further reading

A playful way to test your abilities is e.g. https://cmdchallenge.com/
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